Chapter 5 Problems

1. a. Prove that

$$
\sum_{n \leq x} \omega(n)=x \log \log x+b_{1} x+O\left(\frac{x}{\log x}\right)
$$

2. i. Let p and q denote prime numbers. Explain why

$$
\left(\sum_{p \leq \sqrt{x}} \frac{1}{p}\right)^{2} \leq \sum_{p q \leq x} \frac{1}{p q} \leq\left(\sum_{p \leq x} \frac{1}{p}\right)^{2}
$$

ii. Deduce that

$$
\sum_{p q \leq x} \frac{1}{p q}=(\log \log x)^{2}+O(\log \log x)
$$

iii. Deduce that

$$
\sum_{n \leq x} \omega^{2}(n)=x(\log \log x)^{2}+O(x \log \log x)
$$

the second result in Theorem 1 but now with equality, not an inequality.
3. We start examining the average of Ω with

$$
\sum_{n \leq x} \Omega(n)=\sum_{n \leq x} \sum_{p^{r} \mid n} 1=\sum_{p^{r} \leq x} \sum_{\substack{n \leq x \\ p^{r} \mid n}} 1=\sum_{p^{r} \leq x}\left[\frac{x}{p^{r}}\right]
$$

i. Show that

$$
\sum_{n \leq x}(\Omega(n)-\omega(n))=x \sum_{\substack{p \\ p^{r} \leq x}} \sum_{r \geq 2} \frac{1}{p^{r}}+O\left(\sum_{\substack{p \\ p^{r} \leq x}} \sum_{r \geq 2} 1\right)
$$

ii. Show that

$$
\sum_{\substack{p \\ p^{r} \leq x}} \sum_{r \geq 2} 1=\pi(\sqrt{x})+O\left(x^{1 / 3}\right)
$$

iii. Show that the tail end

$$
\sum_{\substack{p \\ p^{r}>x}} \sum_{r \geq 2} \frac{1}{p^{r}}=O\left(\frac{1}{x^{1 / 4}}\right)
$$

Hint. A bit of trick, but use the idea that for $p^{r} \geq x$ and $r \geq 2$ we have $x^{1 / 4} p^{3 r / 4} \leq p^{r}$.
iv. Combine all parts to deduce that

$$
\sum_{n \leq x}(\Omega(n)-\omega(n))=x \sum_{p} \frac{1}{p(p-1)}+O\left(x^{3 / 4}\right)
$$

v. Deduce that

$$
\sum_{n \leq x} \Omega(n)=x \log \log x+b_{2} x+O\left(\frac{x}{\log x}\right)
$$

for some constant b_{2}.

